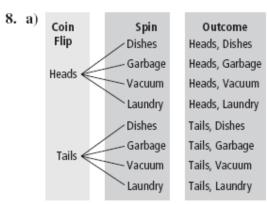
MathLinks 8 Practice and Homework Book Chapter 11 Answers

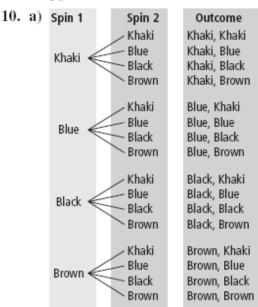
11 Get Ready


- 1. a) 0.8, 80%
- **b**) $\frac{2}{3}$, 66. $\overline{6}$ %
- c) 0.36 or 0.3636..., 36% or 36.36%
- d) $\frac{1}{3}$, 0. $\overline{3}$, or 0.3333...
- 2. $\frac{1}{3}$, $0.\overline{3}$, $33.\overline{3}\%$
- 3. a)

	1	2	3	4	5	6
A	A, 1	A, 2	A, 3	A, 4	A, 5	A, 6
В	B, 1	B, 2	B, 3	B, 4	B, 5	B, 6

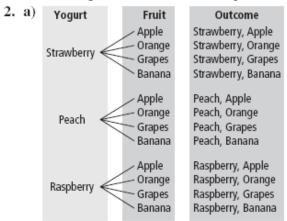
- b) (A, 1), (A, 2), (A, 3), (A, 4), (A, 5), (A, 6), (B, 1), (B, 2), (B, 3), (B, 4), (B, 5), (B, 6)
- c) $\frac{4}{12}$ or $\frac{1}{3}$
- 4. $\frac{2}{3} \times \frac{1}{2} = \frac{1}{3}$
- 5. $\frac{1}{2}$

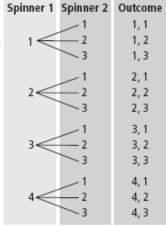
11.1 Determining Probabilities Using Tree Diagrams and Tables

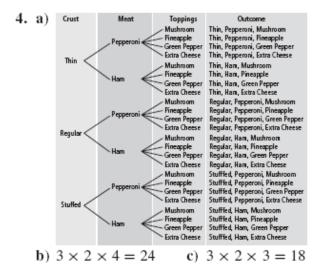

- 1. d) probabilities
- 2. e) P(A then B)
- 3. a) probability
- 4. c) P(A, B)
- 5. b) tree diagrams
- 6. Outcomes: (H, 1), (H, 2), (H, 3), (H, 4), (H, 5), (H, 6), (T, 1), (T, 2), (T, 3), (T, 4), (T, 5), (T, 6)
 - a) $\frac{1}{12}$
- **b**) $\frac{3}{12}$ or $\frac{1}{4}$
- **c**) 0
- 7. a) 1 2 3 4
 3 3,1 3,2 3,3 3,4
 6 6,1 6,2 6,3 6,4
 9 9,1 9,2 9,3 9,4
 - **b**) $\frac{6}{12}$ or $\frac{1}{2}$

b) $\frac{1}{8}$

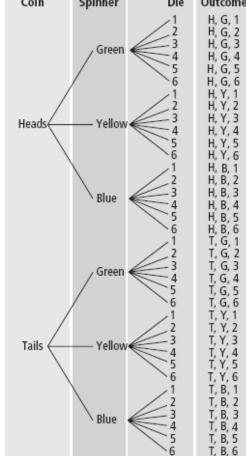
0 ->	_						
9. a)		7	4	1	3	4	9
	7	7, 7	7, 4	7, 1	7, 3	7, 4	7,9
	4	4, 7	4, 4	4, 1	4, 3	4, 4	4, 9
	1	1, 7	1, 4	1, 1	1, 3	1, 4	1, 9
	3	3, 7	3, 4	3, 1	3, 3	3, 4	3,9
	4	4, 7	4, 4	4, 1	4, 3	4, 4	4, 9
	9	9, 7	9, 4	9, 1	9, 3	9, 4	9, 9


b) $\frac{1}{36}$


b) $\frac{4}{16}$ or $\frac{1}{4}$


11.2 Outcomes of Independent Events

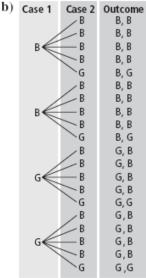
- 1. Order may vary.
 - a) tree diagram b) table c) multiplication



- **b**) 12 **c**) $3 \times 4 = 12$
- 3. a) $4 \times 3 = 12$
 - b) Methods may vary. Example:

5. a) Coin Spinner Die Outcome

Multiplication, $2 \times 3 \times 6 = 36$


- b) 36
- 6. a) Answers may vary. Example: Andre is taking a trip and has the following options. He can fly or take the train; he can leave on Monday, Tuesday, Wednesday, Thursday, or Friday; and he can choose an economy, regular, or first class fare. If he selects one option from each category, how many combinations are possible for his trip?
 - b) Answers may vary, based on question.

11.3 Determining Probabilities Using Fractions

- 1. a) multiplying, success
 - b) multiplying, tree diagrams, tables
 - c) simulation
 - d) results, experimental
- 2. a) Methods may vary. Example:

	Purple	Red	Orange
1	1, P	1, R	1, O
2	2, P	2, R	2, O
3	3, P	3, R	3, O
4	4, P	4, R	4, O

- **b**) $\frac{1}{12}$
- c) $P(4, P) = \frac{1}{4} \times \frac{1}{3} = \frac{1}{12}$
- 3. a) $P(\text{two gray pencils}) = \frac{2}{20} \text{ or } \frac{1}{10}$

4. a) Answers may vary. Example: I used a four-section spinner marked A, B, C, and D for the classes and pulled the words foyer, library, hallway, gymnasium, cafeteria, and office from a bag. I used a table to record my 20 trials. Experimental probability $P(8C, \text{foyer}) = \frac{1}{20}$ or 5%

	F	L	Н	G	C	0
8A	√		✓	V	✓	
8B		✓	✓		✓	
8C	✓		✓	✓	44	✓
8D	✓	//	✓		✓	✓

- b) Theoretical probability $P(8C, \text{ foyer}) = \frac{1}{4} \times \frac{1}{6} = \frac{1}{24} \text{ or } 4.17\%$
- c) Answers may vary depending on the results of the simulation. In this example, the theoretrical probability is lower than the experimental probability.
- **5.** a) P(both shots) = 15%
 - b) Answers may vary. Example: I considered Greg's statistics and used two spinners. Spinner A represents the first shot. It has 10 equally-sized sectors. I shaded six of them. Spinner B represents the second shot. Spinner B has four equally-sized sectors. I shaded one of these sectors. The shaded sections are the shots he makes. I spun spinner A and then spin spinner B. I repeated this 25 times and recorded the results. Spinner A and spinner B must both land on the shaded part for Greg to make both shots.

Makes Both Shot	Misses One or Both Shots
////	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \

$$P(\text{both shots}) = \frac{5}{25} = \frac{1}{5} \text{ or } 20\%$$

c) Answers may vary, depending on the results of the simulation. In this example, the experimental probability is higher than the theoretical probability.

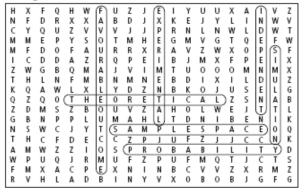
11 Link It Together

Home Who Play Team Team 1 Team 2 Team 3 Team 4 Team 5 Team 6

b) 42

Team 7

- c) 7 teams \times 6 games each = 42 games
- a) Answers may vary. Example: I assumed that each team had an equal chance of winning, so I used a two-section spinner


marked Win and Lose. The first 6 spins were for Team 1, the next 6 spins for Team 2, and so on.

	Win	Lose
1	 	
2	√√	
3	 	√ √
4	 	
5	 	
6	 	
7	✓	/////

b) Answers may vary, depending on the results of the simulation. According to the simulation, team 3 will win four games.

11 Vocabulary Link

- 1. b) favourable outcome
- 2. f) simulation
- 3. c) independent
- 4. e) sample space
- 5. a) experimental
- 6. d) probability
- 7. g) theoretical

