

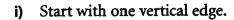
Geometry

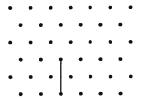
Just for Fun

Penny Patterns This is a pattern of pennies. Set 1 Set 2 Set 3 Set 4 Complete the pattern for Set 5. How many pennies do you need? How many pennies do you need for Set n? Test out your rule for Set 5.

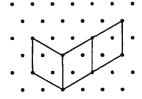
Mental Squares Here is a method for squaring 2-digit numbers ending in 5. Impress your friends by squaring their 2-digit numbers ending in 5 by mental math. Follow these steps: Start with a 2-digit number ending in 5. _____ Multiply the first digit by the next higher digit. _____ This product forms the first part of the square number. The last 2 digits are always 25. Combine the 2 parts to get the square number. _____ Try this method with 3-digit numbers ending in 5. Multiply the first 2 digits by the next higher number. Can you use the method to mentally square 3-digit numbers ending in 5?

Activating Prior Knowledge

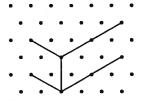



Using Isometric Dot Paper

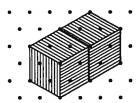
You can use isometric dot paper to represent a 3-dimensional object on a 2-dimensional drawing. Draw the parallel edges as parallel line segments on the isometric dot paper.


Example 1

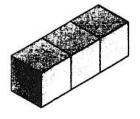
Draw this rectangular prism on isometric dot paper.

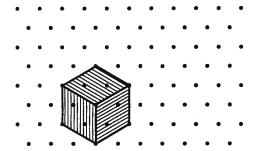


iii) Draw other vertical edges.

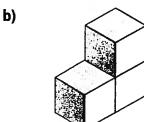


ii) Draw the adjacent horizontal edges that slant up to the left and to the right.

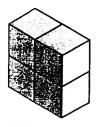

iv) Complete all edges and shade the visible faces to get a 3-D look.



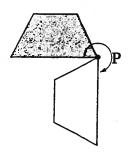
1. Complete the drawing of each object on isometric dot paper.

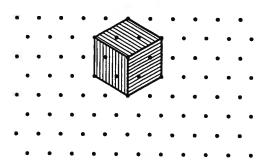


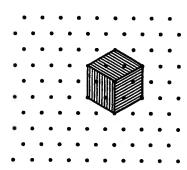
In an isometric drawing, the line segments joining adjacent dots are equal in length.



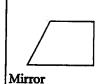
c)

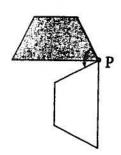



Transformations

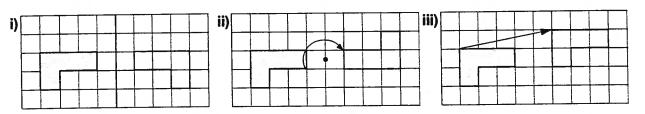

In this translation, the shaded shape is moved 4 units right and 1 unit up.

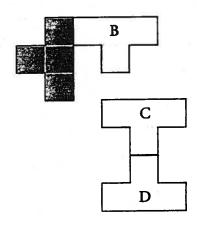
In this **rotation**, the shaded shape is rotated 270° clockwise about point P.




In this **reflection**, the shaded shape is reflected in a vertical line 1 unit to the right of the shape.

line


You get the same image if you rotate the shaded shape 90° counterclockwise about point P.



2. Each drawing shows a transformation. Match the transformation to the drawing.

- a) translation _____
- b) reflection _____
- c) rotation _____
- 3. Identify each transformation.

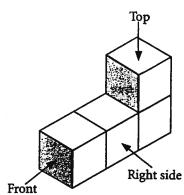
- a) Shape B is an image of Shape A.
- b) Shape C is an image of Shape B.
- c) Shape D is an image of Shape C.

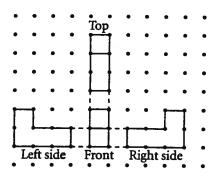
Sketching Views of Objects

Quick Review

The front, top, and side views of an object can be drawn by looking at a model or an isometric drawing of the object.

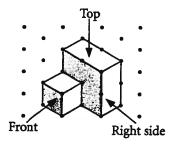
The front, top, and side views of this model can be drawn by rotating the model in order to look at the views directly.

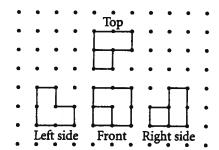

When you draw the different views of the object, draw the front view first.


Place the top view above the front view, and the side views beside the front view.

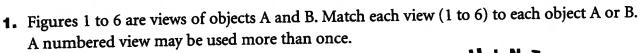
Broken lines show how the views align.

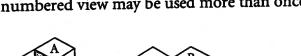
Internal line segments are used to show changes in depth or thickness.

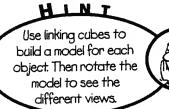

Notice the internal line segments on the front and top views that show the changes in depth. Since there are no changes in depth on the two side views, there are no internal line segments.

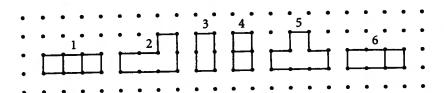


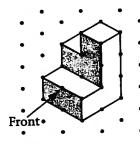
➤ When an isometric drawing of an object is given, you can build a model, and then draw the different views.

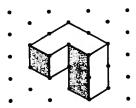

For example, the object with this isometric drawing has the front, top, and side views shown.

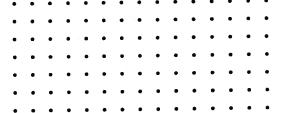


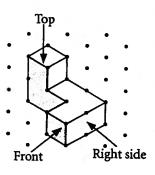


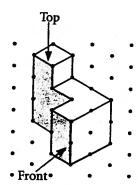


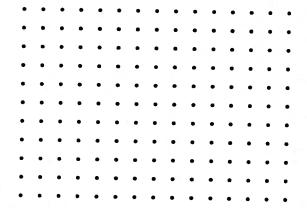

Front

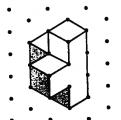

Object	Front View	Top View	Left Side View	Right Side View
A				
В				

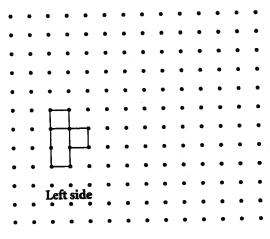

2. The front view of this object is given. Sketch the top and side views.


3. Sketch the front, top, and side views of this object.


4. Sketch the front, top, and side views of this object.




5. Use linking cubes to build a model of the object in the isometric drawing. Then draw the front, top, and side views of the object.



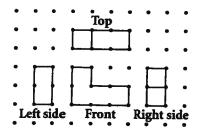
6.	Use linking cubes to build a model of the object in the isometric drawing. Then draw the front, top, and side views of the object. The left side is done for you.
----	--

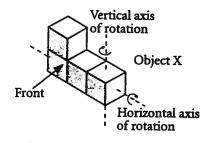
- 7. Many signs have views of objects.

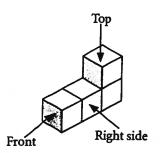
 Identify the view (front, top, or side) of the object on each sign.
 - a) construction worker

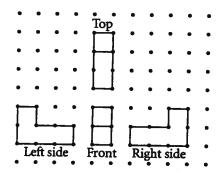
b) school children

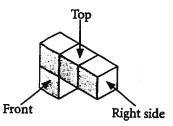
c) curved road

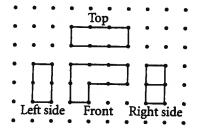



Quick Review

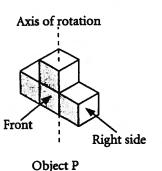

- An object can be rotated horizontally about a vertical axis of rotation. The rotation can be clockwise or counterclockwise.
- An object can also be rotated vertically about a horizontal axis of rotation. The rotation can be toward you or away from you.

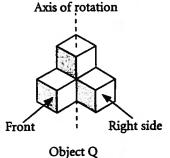

Object X has these views.

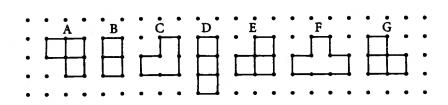



Object X is rotated horizontally 90° clockwise about a vertical axis. Here are the object's new orientation and views.

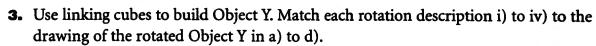
Object X is rotated vertically 180° about a horizontal axis away from you. Here are the object's new orientation and views.

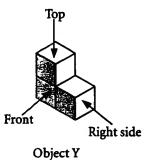


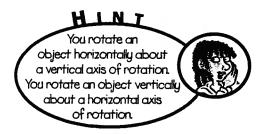



➤ A 180° clockwise rotation is the same as a 180° counterclockwise rotation. A 90° clockwise rotation is the same as a 270° counterclockwise rotation. A 270° clockwise rotation is the same as a 90° counterclockwise rotation.

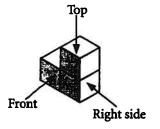
1. a) Build each object. Rotate each object horizontally 90° clockwise about the axis of rotation shown. Match each view (A to G) to the front, top, and side views of each rotated object. A lettered view may be used more than once.

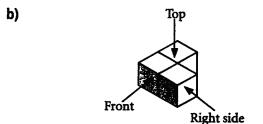



Object	Front View	Top View	Left Side View	Right Side View
P				
Q	#			

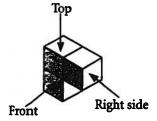

- b) Which object, P or Q, has the left side view the same as the right side view after the rotation?
- 2. The objects P and Q in question 1 are rotated horizontally 270° counterclockwise about the axis of rotation shown.
 - a) Which view (A to G) is the top view of the rotated Object P?
 - b) Which view (A to G) is the front view of the rotated Object Q?
 - c) Explain your answers to parts a) and b).

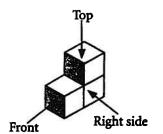
196





a)

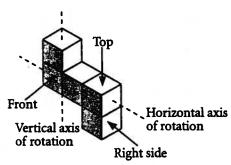


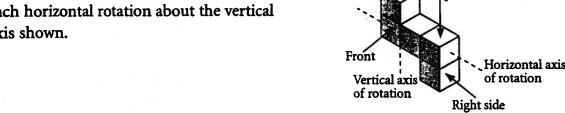

Rotation:

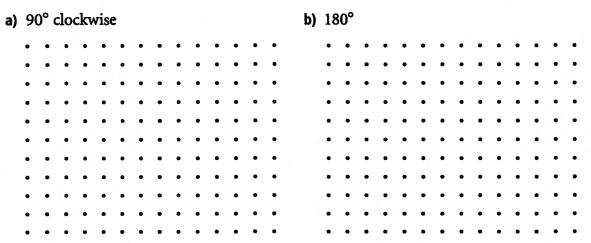
Rotation:

c)

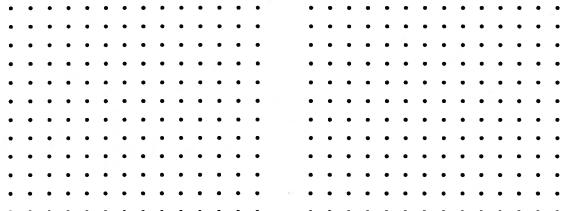
d)


Rotation:


Rotation:

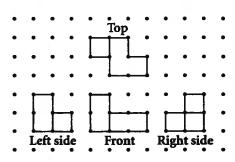

- i) a rotation of 270° counterclockwise about a vertical axis
- ii) a rotation of 180° about a horizontal axis
- iii) a rotation of 180° about a vertical axis
- iv) a rotation of 90° about a horizontal axis away from you

4. Use linking cubes to build this object. Draw the front, top, and side views after each horizontal rotation about the vertical axis shown.



5. Draw the front, top, and side views of the object in question 4 after each vertical rotation about the horizontal axis shown.

6. Use linking cubes to build an object that has the same front, top, and side views after each of the horizontal or vertical rotations in this lesson. Sketch or describe the object you built.



Quick Review

You can often build an object given the front, top, and side views.

Note that internal line segments in these views show changes in depth.

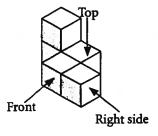
The views of an object are shown.

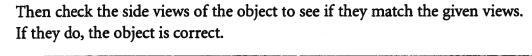
The object can be built using linking cubes:

The front view shows that you need 2 cubes in a vertical column and 2 cubes in a horizontal row.

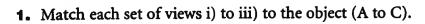


The top view shows that you need to add a cube onto B to make an L-shape C.

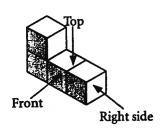


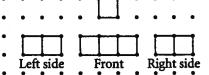


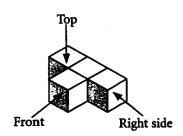
The top view also shows that A must be attached to C with a change in depth.

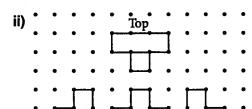


The resulting object looks like this:

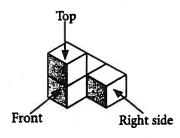


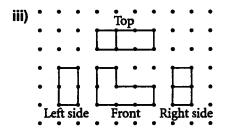


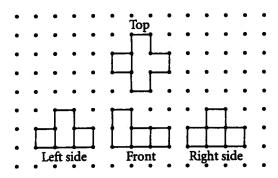




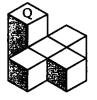
i)	•	•	•	•	•	Тор	•	•	•
	•	•	•	•				•	•
	•	•	•	•	L	7 1	_	•	•
								•	•


B: _____

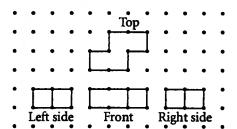


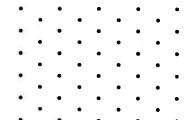

Right side

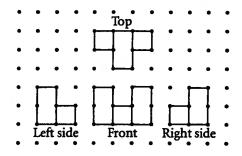
C.

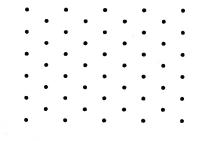


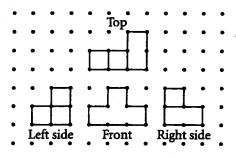
2. Which object, P, Q, or R, has these views?

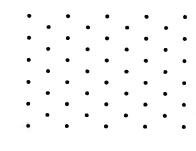


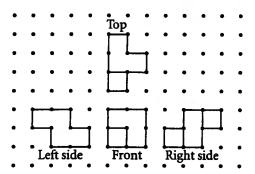



3. Use these views to build an object.



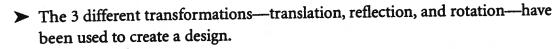

4. Use these views to build an object.

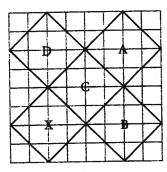



5. Use these views to build an object.

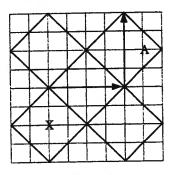


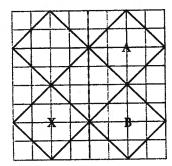
6. Use these views to build an object.




Identifying Transformations

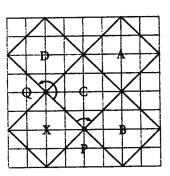
Quick Review




Here are some transformations that can be identified in this design.

Square A is the image of Square X after a translation 4 units right and 4 units up.

Square B is the image of Square X after a reflection in the broken line.



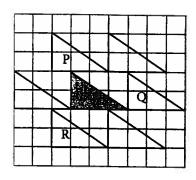
Square C is the image of Square X after a rotation of 90° clockwise about point P.

Square C is also the image of Square X after a rotation of 90° counterclockwise about point Q.

Square D is the image of Square X after a rotation of 180° about point Q.


You can make a tracing of square X and rotate it about points P and Q to check these results.

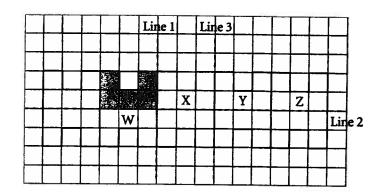
- ➤ A rotation of 180° clockwise about a point gives the same image as a rotation of 180° counterclockwise about the same point.
- ➤ Under any transformation, the original shape and its image are always congruent.

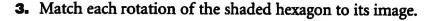


a) 3 units right _____

b) 1 unit left and 2 units down

c) 1 unit left and 2 units up _____

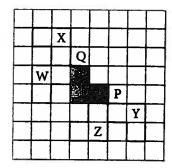


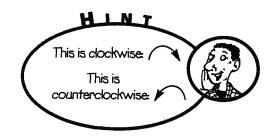

2. Match each reflection of the shaded octagon to its image.

a) reflection in Line 1

b) reflection in Line 2

c) reflection in Line 3



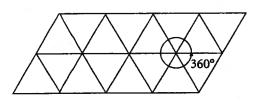

a) 90° counterclockwise about point P

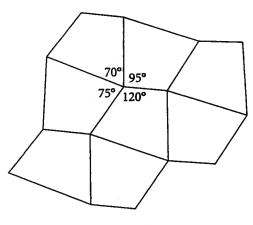
b) 180° about point P

c) 90° clockwise about point Q

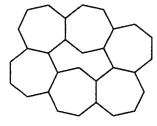
d) 180° about point Q

	rotation of 180° about point P		\top				-	1		
١ -		· _	++	-	-	-	-	\dashv	-	
, ,	a translation 3 units up								\exists	
	a reflection in Line x	-	++	-	A		В	-	-	
										Line x
i) a	a reflection in Line y	_				C			4	
e) :	a rotation of 90° counterclockwise about point P		-	E	79-78	P			\dashv	
		+	-	-	╁	D	-			
	tundation 2 units right and 2 units un	į								
) :	a translation 2 units right and 2 units up						<u> </u>		Ц	
ide	entify each transformation of the shaded Shape X.				L.	ine ,	,			
De	scribe each transformation in as many ways as you	can.								
a)	Shape A is an image of Shape A.									
					_	Т-			, T	\neg
			_		+	+	-			\dashv
			+		+	\dagger	+			\dashv
b)	Shape B is an image of Shape X.		Q		I			В		
•	•	E			\perp	1	igert	Γ_		_
		 		P-	X	1	+	\vdash		-
c)	Shape C is an image of Shape X.			1	+	\downarrow	¢	1		
	-				I			-		
								<u> </u>		
d)	Shape D is an image of Shape X.									
					•					
e)	Shape E is an image of Shape X.									
				Γ				•		7
		· · · · · · · · · · · · · · · · · · ·								
f)	Shape F is an image of Shape X.								ct,	
					sh	ape	to c	heck	*	
		<u></u>			yo	ur re	esult	S.		
) de De a) b)	dentify each transformation of the shaded Shape X.	a translation 2 units right and 2 units up dentify each transformation of the shaded Shape X. Describe each transformation in as many ways as you can. Shape A is an image of Shape X. Shape B is an image of Shape X. C) Shape C is an image of Shape X. d) Shape D is an image of Shape X.	a translation 2 units right and 2 units up dentify each transformation of the shaded Shape X. Describe each transformation in as many ways as you can. Shape A is an image of Shape X. b) Shape B is an image of Shape X. C) Shape C is an image of Shape X. d) Shape D is an image of Shape X. e) Shape E is an image of Shape X.	a translation 2 units right and 2 units up dentify each transformation of the shaded Shape X. Describe each transformation in as many ways as you can. Shape A is an image of Shape X. Shape B is an image of Shape X. C) Shape C is an image of Shape X. d) Shape D is an image of Shape X. E) Shape E is an image of Shape X.	a translation 2 units right and 2 units up dentify each transformation of the shaded Shape X. Describe each transformation in as many ways as you can. Shape A is an image of Shape X. C) Shape B is an image of Shape X. C) Shape C is an image of Shape X. d) Shape D is an image of Shape X. e) Shape E is an image of Shape X. f) Shape F is an image of Shape X.	a translation 2 units right and 2 units up Line: dentify each transformation of the shaded Shape X. Describe each transformation in as many ways as you can. Shape A is an image of Shape X. C) Shape B is an image of Shape X. C) Shape C is an image of Shape X. d) Shape D is an image of Shape X. e) Shape E is an image of Shape X. f) Shape F is an image of Shape X.	a rotation of 90° counterclockwise about point P a translation 2 units right and 2 units up dentify each transformation of the shaded Shape X. Describe each transformation in as many ways as you can. Shape A is an image of Shape X. c) Shape B is an image of Shape X. c) Shape C is an image of Shape X. d) Shape D is an image of Shape X. e) Shape E is an image of Shape X. f) Shape F is an image of Shape X.	a translation 2 units right and 2 units up dentify each transformation of the shaded Shape X. Describe each transformation in as many ways as you can. Shape A is an image of Shape X. C) Shape B is an image of Shape X. d) Shape C is an image of Shape X. e) Shape E is an image of Shape X. Photographic American Shape A. Make a tracing of Shape X. Make a tracing of Shape X. Make a tracing of Shape X. Translate, reflection of the shaded Shape X. Make a tracing of Shape X. Translate, reflection of the shaded Shape X.	a translation 2 units right and 2 units up dentify each transformation of the shaded Shape X. Describe each transformation in as many ways as you can. Shape A is an image of Shape X. Shape B is an image of Shape X. C) Shape C is an image of Shape X. c) Shape D is an image of Shape X. e) Shape E is an image of Shape X. f) Shape F is an image of Shape X.

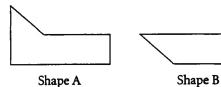

Constructing Tessellations

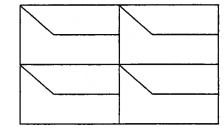

Quick Review

➤ When you can cover a page using congruent copies of a shape with no overlaps and gaps, the shape tessellates, creating a design called a tessellation.

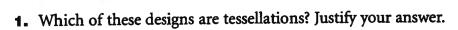

All triangles and all quadrilaterals tessellate.

At any point where the vertices meet, the angles add up to 360°.

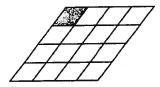

➤ There are some shapes that do not tessellate because they cover a page with overlap or gaps. For example, this heptagon does not tessellate.

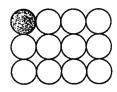


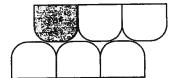
➤ You can combine shapes to tessellate.

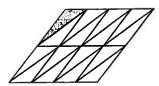

These combined shapes are called **composite shapes**.

For example, Shape A combines with Shape B to form a quadrilateral that tessellates.

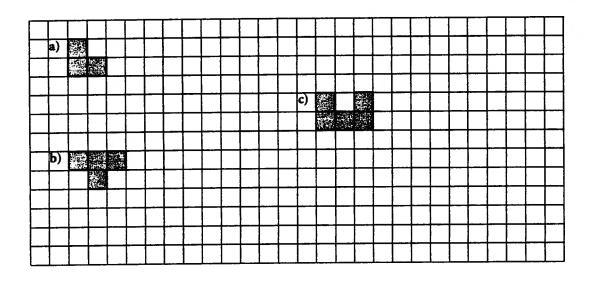





a)

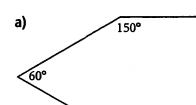

b)

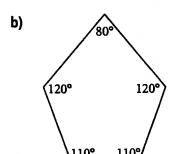
c)


d)

2. Which of these shapes tessellate? Use a drawing to justify your answer.

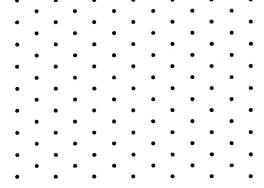
c) II_shane				
	c) U-shape			

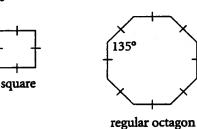



3. Which of the polygons can be used to create a tessellation?

Justify your answer by checking if copies of the polygon can surround a point.

150°


150°

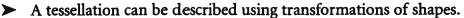


4. Create a composite shape that tessellates using a regular hexagon and one or more equilateral triangles. Show your tessellation on the isometric dot paper.

150°

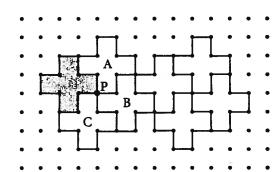
5. Arlene is planning to create a tessellating quilt pattern using one of these shapes.

a) Which shape can Arlene use? Why?


b) Can Arlene use a combination of these shapes to create a tessellating quilt pattern? Explain.

Identifying Transformations in Tessellations

Quick Review


- ➤ Under each transformation, the area of the shape does not change. This is known as conservation of area.
- ➤ A tessellation may be described by one or more than one type of transformation.

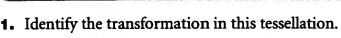
This tessellation can be described by translations or by rotations. Start with the shaded shape.

To get Shape A, translate the shaded shape 2 units right and 1 unit up.

To get Shape B, translate the shaded shape 3 units right and 1 unit down.

To get Shape C, translate the shaded shape 1 unit right and 2 units down.

Alternatively:


To get Shape A, rotate the shaded shape 90° clockwise about point P.

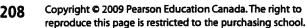
To get Shape B, rotate the shaded shape 180° about point P.

To get Shape C, rotate the shaded shape 90° counterclockwise about point P.

You can make a tracing of the shaded shape and translate it or rotate it about point P to check these results.

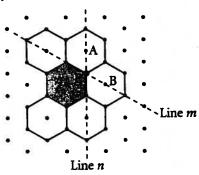
To complete the tessellation, repeat these translations or rotations on the shaded shape.

Circle your answer.


translation

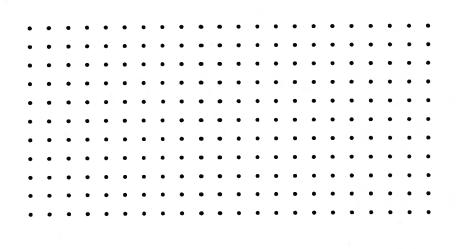
reflection

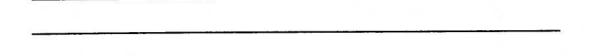
rotation



•	Anneite the true transformations in this tossellation								
	dentify the two transformations in this tessellation.								
•	Circle your answer.	•	•	•	• •	•	• •	•	•
1	ranslation and reflection	•	•	Á	V:		$\overline{\cdot}$.\
1	translation and rotation	•	7.	\ <u>'</u> /	/.	\·	/.	·/	/
1	rotation and reflection	•	•	•	•	•	• •	•	•
3.]	Identify the transformations in this tessellation.		•	•		•		•	•
I	Use these words or phrases to complete		•	•	• •	•	Λ.	. •	•
	each sentence.		•	•	В	-{	• >		1
			•	700	1 5	<i>-</i>	+-	•	丿
1	translation, reflection, rotation, vertical line,		•			⟨•	₽A•	X	•C
	horizontal line, 4 units up, 4 units right,		•	6		1	┸,	/·`	$\overline{}$
	90°, 180°, clockwise, counterclockwise		•	•	Щ	_	ار .		1
	70, 180, clockwise, counterclockwise		•	•		•	\vee .	•	•
			•	•		•			•
i	a) Shape A is a of Shape X					.•			
1	b) Shape B is a of Shape X					abo	out a	poi	nt.
•	c) Shape C is a of Shape X in a					····-	_ •		
4.]	In the tessellation, Shape Y is the starting shape.								
	B C								
	• • • • • • • • • • • • • • • • • • • •								
	· ()								
				_	_	_			
]	Describe the transformation needed to get to each o	of tl	ne i	lette	ered	sha	pes.		

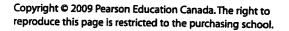
5. In the tessellation, Shape Z is the starting shape.


Describe as many different transformations as you can to get to each lettered shape.


Δ.			
~	 		

D.				
D.		 · · · · · · · · · · · · · · · · · · ·	 	

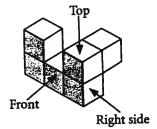
6. Use this shape, or one of your own shapes, to create a tessellation on square dot paper. Identify the transformations you used.

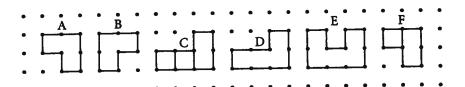

In Your Words

Here are some of the important mathematical words of this unit. Build your own glossary by recording definitions and examples here. The first one is done for you.

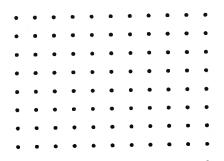
bout which an object or a shape is		_
otated	I _L	
or example, the broken line is an axis of		
otation.		
ansformation	tessellation	
		i.
mposite shape	conservation of area	
		4
other mathematical words you need to know	7.	

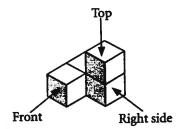
Unit Review

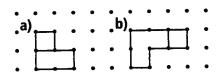


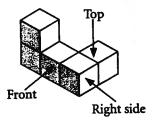

LESSON

8.1 1. Match each of the front, top, and side views of this object to the correct figure.


Front: _____ Top: ____


Left side: _____ Right side: _____

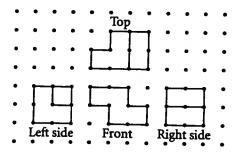


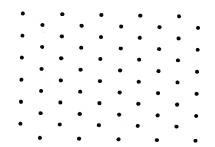

2. Sketch the front, top, and side views of this object.

8.2 3. This object is rotated horizontally. The two new views are shown.

Describe the rotation that produced each view.

- a) This is the front view after a rotation of
- b) This is the top view after a rotation of _____


LESSON


4. Use linking cubes to build the object in question 3. Draw the views of the object after each rotation.

a) a vertical rotation of 90° toward you

b) a vertical rotation of 180°

5. Use these views to build an object. How can you check that the object is correct?

6. Match each transformation of the shaded shape to its image.

a) a translation 1 unit right and 3 units up

•	•	•	IT: C O .	•	•
 •	•	•	Line of reflection	•	•
•	•	•	 	•	•

b) a translation 2 units left and 3 units down

c) a reflection in the vertical line

d) a reflection in the horizontal line

e) a rotation of 180° about point Q

f) a rotation of 90° clockwise about point P

	_	_	!	_						
•	•	•			•	•	•	•	•	
•	•	•	ł . ·	f _ '	•	•	•	•	•	
•	•	•	Α	В	_			_	_	
_		_				C		•	•	
					I	ine	of r	efle	ctio	n
•	•	G	1	'	•	•	•	•	•	
•	•	9		_	<u>_</u>		•	•	•	
•	•—		3.77		D	\Box	_	_	_	
		Q		P		_	•	•	•	
•	F	Е	•	•	•	•	•	•	•	
•	,	-	•	•	•	•	•	•	•	
					_	_	_			
		i		•	•	•	•	•	•	
•	•	, ,			•	•	•	_	_	

_		_	_
	-	2	8.1
L	E5	so	IN

a regular 12-sided polygon with each	angle 150°
Combine it with another shape to form	
-	
Use the shaded shape to create a tesse	ellation on isometric dot paper.
	• • • • • •
	The shaded shape does not tessellate. Combine it with another shape to form composite shape that tessellates. Show your tessellation.

214