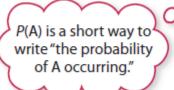
#### 5.1

## probability

- the likelihood or chance of an event occurring
- Probability


   favourable outcomes
- can be expressed as a ratio, fraction, or percent

#### outcome

 one possible result of a probability experiment

### favourable outcome

 a successful result in a probability experiment



# Key Ideas

• Probability =  $\frac{\text{favourable outcomes}}{\text{possible outcomes}}$ 

- Probability can be written as a fraction, a ratio, or a percent.  $P(\text{red}) = \frac{5}{10} \text{ or } 5:10 \text{ or } 50\%$
- The probability of an impossible event is 0 or 0%.  $P(\text{yellow}) = \frac{0}{10} \text{ or } 0:10 \text{ or } 0\%$
- The probability of a certain event is 1 or 100%.  $P(\text{jellybean}) = \frac{10}{10} \text{ or } 10:10 \text{ or } 100\%$



## independent events

 the outcome of one event has no effect on the outcome of another event

## sample space

 all possible outcomes of an experiment

## tree diagram

- a diagram used to organize outcomes
- contains a branch for each possible outcome of an event

# Key Ideas

 Two events are independent if the outcome of one event has no affect on the outcome of the other event.

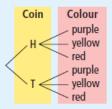




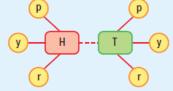
000

When you roll a die, it is not affected by another die being rolled beside it.

 You can create tables, tree diagrams, and other diagrams to organize the outcomes for two independent events.


### 5.3

### random


 an event in which every outcome has an equal chance of occurring

- You can use a tree diagram, table, or other organizer to help determine probabilities.
- Count the favourable outcomes and divide by the total number of outcomes to find the probability.





|       | Purple    | Yellow    | Red    |
|-------|-----------|-----------|--------|
| Heads | H, purple | H, yellow | H, red |
| Tails | T, purple | T, yellow | T, red |



 $P(\text{heads, purple}) = \frac{1}{6}$ 

5.4

# Key Ideas

 Tables and tree diagrams can be useful tools for organizing the outcomes of complex independent events.

# 5.5 experimental probability

 the probability of an event occurring based on experimental result

# theoretical probability

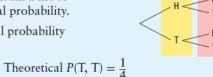
 the expected probability of an event occurring

## Key Ideas

 The probability of an event determined from experimental outcomes is called experimental probability.






Flip two pennies 10 times.

 Experimental outcomes are usually collected in a tally chart and counted at the end of the experiment.

| Coin Outcomes | Experimental Results | Number of Results |
|---------------|----------------------|-------------------|
| H, H          | I                    | 2                 |
| H, T          | <del>    </del>      | 6                 |
| T, H          | 1                    | 1                 |
| T. T          | I                    | 1                 |

- The probability of an event determined from a list of all possible outcomes is called theoretical probability.
- Experimental probability and theoretical probability are not always the same.

Experimental  $P(T, T) = \frac{1}{10}$ = 0.10 or 10%



= 0.25 or 25%